

Neural Correlates of Motor Control and Stress Response During Ambidextrous Polyrhythmic Drumming

**An examination into how different musical genres influence
autonomic nervous system responses during
individual instrumental practice**

Author: H.R. Lindquist

Year: 2025

Abstract

Background

Stress plays a dual role in musical performance—it can both help and hinder musicians. While researchers have studied group music-making extensively, we know much less about how individual musicians, particularly older adults, experience and manage stress during solo practice sessions.

Research Question

This study investigates how different types of music affect the body's stress response during individual drum practice. Musical practice requires complex mental and physical coordination that likely creates different physical responses depending on the style of music being played. However, systematic research into these relationships has been limited.

The study used continuous heart rate monitoring to examine how the body's automatic stress response (autonomic nervous system) behaves during practice of four different musical styles.

Methods

Study Design: One advanced drummer (age 60+) was followed over 30 months (January 2023–June 2025) across 144 practice sessions.

Monitoring Equipment: Hexoskin biometric shirt with continuous heart rate variability (HRV) monitoring, analyzed using Kubios HRV Scientific 4.2.0 software.

Musical Genres Studied:

- Fusion: Complex polyrhythmic patterns
- Latin: Salsa, Songo, and Guaguancó rhythms
- Jazz: Swing and bebop rhythms
- Rock: Progressive patterns

Special Challenge: For all four genres, the drummer switched the role of each hand every measure, creating additional cognitive and motor demands.

Measurements: The study calculated correlations between Stress Index (SI) and both average and maximum heart rate for each genre. It also examined whether these patterns were stable over time by comparing daily sessions with monthly averages.

Results

All genres showed significant positive correlations between stress and heart rate ($p<0.01$), but each genre created distinctly different patterns.

Fusion showed the strongest sustained relationship ($r=0.814$ with average heart rate, $p<0.001$), explaining 66.3% of response variation. This suggests Fusion creates consistent, predictable physiological demands.

Latin music revealed a previously undocumented pattern: moderate correlation with average heart rate ($r=0.430$, $p=0.005$) but exceptionally strong correlation with maximum heart rate ($r=0.916$, $p<0.001$). This creates a unique "rest-spike" signature—periods of calm punctuated by intense stress peaks.

Jazz ($r=0.791$) and **Rock** ($r=0.781$) showed intermediate sustained response patterns, falling between Fusion's strong consistency and Latin's variable pattern.

Time-based patterns: Rock, Fusion, and Jazz showed stronger correlations when data were grouped by month rather than by individual day. This indicates long-term conditioning effects—the body adapts over weeks and months. Latin music showed the opposite pattern (stronger daily correlations), suggesting it creates immediate responses rather than long-term adaptation.

Cross-genre effects: Practice in one genre influenced performance in others. Previous Latin practice moderately predicted subsequent Rock performance ($r=0.42$), suggesting physiological "priming" effects.

Conclusions

Different musical genres create distinct physiological signatures during individual practice. These findings have potential implications for optimizing practice routines and health outcomes, though further validation in larger groups is needed.

The Latin music biphasic response pattern—likely reflecting the cognitive and motor demands of switching hand roles every measure—represents a novel, technique-specific response within Latin drumming. This finding warrants replication in larger studies.

Fusion music's strong, stable relationship with heart rate suggests it provides optimal conditions for skill development. Latin music's acute response pattern may offer benefits for building stress resilience.

These findings support developing evidence-based, genre-specific practice protocols. Such protocols could harness beneficial stress responses while optimizing both musical learning and heart health in older musicians.

Key Implication: Stress responses during instrumental practice are reliably measurable and vary systematically by musical style. The findings support viewing adaptive stress as helpful for learning. They suggest that older musicians can use physiological self-monitoring to balance challenge and recovery during practice.

Next Steps: Future studies should expand to multiple participants and integrate brain imaging techniques to further explore how stress, thinking, and musicianship interact.

Note on Document Preparation

This manuscript was formatted with assistance from Claude Al. All research design, data collection, analysis, interpretation, and written content are the author's original work. Al assistance was limited to document formatting and structural organization for publication purposes.

Keywords

heart rate variability • musical practice • autonomic nervous system • stress response
• polyrhythmic coordination • genre-specific physiology • mature musicians

Chapter 1: Introduction

1.1 Background: Music-Making and Physical Health

Research shows that making music, particularly in groups, produces significant health benefits. Singing and collaborative music-making create measurable improvements including:

- Enhanced relaxation
- Increased blood circulation
- Deeper breathing patterns
- Activation of internal muscles and neural networks

(Magrini 2019)

Group musical activities provide additional benefits beyond individual music-making. These include improved communication, social interaction, and community building, which together produce extraordinary physical advantages (Tsugawa 2009; Daykin et al. 2017; Helton 2019; Barbeau & Cosette 2019).

Long-term studies suggest that regular musical instrument practice may protect against cognitive decline and dementia in aging populations (Balbag et al. 2014; Yesil & Ünal 2017).

The Research Gap

Despite these benefits, we have a significant gap in understanding the physical impacts of **individual** musical practice, particularly among older musicians. While studies have examined how instrumental practice affects cognitive decline in older adults (Roman-Caballero et al. 2018), comprehensive studies of individual musicians remain limited and critically needed (Lehmann 1997).

Previous research has focused primarily on:

- Younger classical musicians in academic settings (Talbot-Honeck & Orlick 1999)
- Practice habits at conservatories (Taylor 2019; Johansen & Nielsen 2019)

This leaves older amateur musicians practicing independently largely unstudied.

1.2 The Paradox: Beneficial Stress vs. Health Risks

Individual instrumental practice presents a physiological contradiction. While musical training provides cognitive and heart health benefits, research over the past 30 years reveals alarming rates of injury and performance-related health problems among musicians of all ages.

Australian research shows that musicians face significant occupational health risks. Injury rates often exceed 50% among professional performers, yet music education programs frequently lack adequate health and safety training (Wijsman & Ackermann 2018).

This contradiction raises fundamental questions: How can practice be both beneficial and harmful? The answer may lie in understanding different types of stress.

Short-term vs. Long-term Stress

According to Sapolsky's research on stress physiology, short-term stress actually enhances learning and memory:

"In the short term, stress does great things for your learning and memory. You increase your heart rate, you loosen up blood vessels in critical areas of the brain, you deliver more oxygen and glucose to the brain, and your brain starts working better. Also, with the onset of stress, connections between neurons become more excitable in the hippocampus, and long-term potentiation happens more readily. Studies show that stressors make it easier to remember certain things."

> (Sapolsky 2004)

This beneficial stress response involves sympathetic nervous system (SNS) activation through adrenaline release and moderate cortisol elevation. (Sapolsky et al., 2000). This leads to:

- Increased alertness
- Muscle stimulation
- Enhanced mental performance

Critical Point: These benefits occur only when stress is moderate, brief, and experienced in a safe context—precisely the conditions found in focused musical practice.

The Harmful Side of Stress

While short-term stress helps learning, prolonged elevated cortisol can:

- Inhibit growth of new brain cells
- Damage existing neurons (particularly in the hippocampus, crucial for memory)
- Create fear responses through amygdala sensitization

(Sapolsky 2004; Norden 2007)

Understanding this distinction is critical for creating practice protocols that use beneficial stress while avoiding harmful chronic activation.

1.3 Heart Rate Variability: Measuring the Stress Response

Heart rate variability (HRV) provides a non-invasive, objective way to measure stress response during musical performance. HRV reflects the dynamic balance between two branches of the autonomic nervous system:

- Sympathetic nervous system (SNS): The "fight or flight" response
- Parasympathetic nervous system (PNS): The "rest and digest" response

HRV offers insight into the body's real-time stress response and recovery patterns. Modern HRV analysis systems can:

- Quantify stress levels
- Distinguish between beneficial arousal states and potentially harmful chronic stress patterns

Technological Advances

Recent advances in wearable monitoring have made continuous HRV assessment feasible during complex motor tasks like musical practice. Systems such as the Hexoskin biometric shirt, combined with sophisticated analysis software (e.g., Kubios HRV), provide research-grade physiological monitoring in natural practice environments.

This technological convergence enables, for the first time, a detailed examination of how specific musical activities influence automatic stress responses.

Validation: Modern wearable cardiac monitoring systems have been extensively validated against laboratory-grade equipment. Research-grade devices like the Hexoskin demonstrate high agreement for heart rate variability measurement during physical activity (Murakami et al. 2016; Elliot et al. 2019).

1.4 How Different Musical Styles Create Different Demands

Musical genres impose distinct mental and physical demands that likely produce different stress response patterns. However, systematic investigation of genre-specific stress responses has been limited. Existing research has focused primarily on general music-making benefits rather than examining how specific musical characteristics influence physical outcomes.

1.4.1 Polyrhythmic Complexity

Complex polyrhythmic patterns—such as those found in fusion and Latin music—require simultaneous coordination of multiple limbs performing independent rhythmic patterns.

This mental-motor challenge likely activates diverse brain networks including:

- Motor cortex (movement control)
- Cerebellum (coordination)
- Prefrontal cortex (planning and decision-making)
- Anterior cingulate cortex (conflict monitoring)

The physical demands of maintaining multiple rhythmic patterns simultaneously may create unique stress response patterns not seen in simpler musical tasks.

Research Evidence: Studies of professional drummers show that complex rhythmic coordination engages distributed brain networks for control and movement, including prefrontal, premotor, and supplementary motor regions. This supports the high executive (decision-making) demand imposed by polyrhythmic performance (Schlaffke et al. 2019; Tachibana et al. 2024).

1.4.2 Cognitive Task-Switching

Certain musical genres—particularly those involving rapid pattern changes or role-switching between limbs—may activate brain networks associated with mental flexibility and task-switching.

Research in cognitive neuroscience shows that task-switching creates characteristic physical signatures, including temporary increases in arousal at transition points. Musical genres requiring frequent mental switching may produce similar physical patterns.

Neural Basis: At the brain level, task-switching is associated with temporary activation of the anterior cingulate cortex and dorsolateral prefrontal cortex. These areas are involved in conflict monitoring and executive control demands (Tachibana et al. 2024; Segev 2013).

1.4.3 Motor Learning and Skill Acquisition

Different genres likely engage motor learning systems to varying degrees:

Simple, repetitive patterns may rely more heavily on automated motor programs stored in the basal ganglia (deep brain structures).

Complex, novel patterns may require sustained prefrontal cortex engagement (conscious planning and control).

These different brain activation patterns should produce measurably different stress responses that could be detected through continuous HRV monitoring.

Theoretical Foundation: Repeated motor practice strengthens connections between neurons through activity-dependent plasticity. Novel coordination tasks require dynamic reorganization of the brain's outer layer (cortex) (Hebb 2002; Segev 2013).

1.5 The Older Musician: Unique Considerations

Older musicians (age 50+) represent a particularly understudied group despite their growing numbers and unique physical considerations.

Age-related changes may influence how different musical genres affect stress responses:

- Cardiovascular function changes
- Cognitive processing changes
- Motor control changes

Additionally, older amateur musicians often practice with different motivations than younger professional musicians, potentially creating distinct stress-response patterns.

The Adult Brain's Capacity for Change

Contrary to traditional assumptions about declining brain flexibility, recent neuroscience research shows that adult brains remain capable of:

- Generating new neurons (neurogenesis)
- Forming new neural connections (synaptic plasticity)

These changes occur throughout life.

Brain adaptation in later adulthood has been demonstrated in both thinking and movement domains. Musical practice has been specifically linked to preserved executive function and working memory in healthy aging populations (Roman-Caballero et al. 2018; Wang 2010).

Musical practice may be particularly effective at promoting these adaptive changes in older adults. However, the specific genres or practice approaches that optimize brain flexibility remain unclear.

1.6 Research Gap and Study Rationale

Despite the clear importance of understanding physical responses to musical practice, several critical gaps exist in current knowledge:

1. Limited focus on individual practice: Most research examines group music-making rather than solo practice sessions
2. Lack of genre-specific analysis: Studies typically treat "music" as a single category rather than examining genre-specific effects
3. Insufficient older musician research: Most studies focus on young conservatory students rather than older amateur musicians
4. Absence of objective physical measurement: Reliance on self-report measures rather than continuous physical monitoring
5. Cross-sectional rather than longitudinal designs: Limited understanding of how physical responses change over time

1.7 Study Design and Approach

This study addresses these gaps through a single-subject longitudinal design following one older drummer (age 65+) over 30 months (January 2023 - June 2025) during routine individual practice.

Methodological Approach

The study combines:

Continuous physiological monitoring: Hexoskin biometric shirt with Kubios HRV. Scientific analysis captured stress indices, heart rate, and autonomic nervous system activity across 144 practice sessions.

Genre-specific analysis: Four distinct musical styles were examined—Fusion (complex polyrhythms), Latin (Salsa, Songo, and Guaguancó), Jazz (swing/bebop), and Rock (progressive patterns)—each presenting unique mental-motor demands. For all genres, the drummer used measure-by-measure hand role-switching to increase challenge.

Time-based analysis: Both daily (session-level) and monthly (aggregated) correlations were calculated to distinguish immediate physical responses from long-term conditioning effects.

Video synchronization: Practice sessions were recorded to enable precise matching between physical events and specific musical activities. This allowed identification of technique-specific stress signatures.

This design enables objective measurement of subjective practice experiences while maintaining ecological validity (real-world conditions) through natural practice settings.

1.7.1 Research Objectives

- Quantify genre-specific relationships between stress indices and heart rate responses during individual musical practice
- Identify unique physical signatures associated with different musical genres
- Examine whether genre-specific responses remain stable across daily and monthly time scales
- Assess cross-genre carryover effects that might influence session sequencing strategies

1.7.2 Hypotheses

H1: Different musical genres will produce distinct correlation patterns between stress indices and heart rate measures, reflecting genre-specific mental and motor demands.

H2: Genres with greater polyrhythmic complexity (Fusion, Latin) will show stronger correlations between stress indices and heart rate responses than simpler genres (Rock, Jazz).

H3: Time-based analysis will reveal genre-specific patterns, with some genres showing stronger daily relationships (immediate responses) and others showing stronger monthly relationships (conditioning effects).

H4: Cross-genre lag correlations will demonstrate measurable physiological priming effects, with complex genres influencing subsequent heart rate responses in other genres.

1.8 Why This Research Matters

This research makes three critical contributions that advance our understanding of music-brain-body relationships:

Scientific Innovation

By combining continuous HRV monitoring with video-synchronized practice documentation over 30 months, this study demonstrates a novel methodology for objective measurement of subjective practice experiences.

The approach is:

- Replicable across researchers
- Scalable to multiple participants
- Applicable to diverse musical instruments and styles

Most importantly, it can identify **specific moments** during practice when physical stress peaks, enabling precise intervention.

Clinical and Practical Impact

Understanding genre-specific physical patterns enables evidence-based practice recommendations. If, as hypothesized, different genres create distinct stress responses, musicians and educators could strategically sequence practice activities to optimize both:

- Skill development
- Heart health

For the growing population of older adults engaged in musical practice, such knowledge could inform healthy aging strategies.

Theoretical Contribution

Music performance research has traditionally treated "music" as a uniform category. This study challenges that assumption by testing whether musical genres—distinguished by their rhythmic, harmonic, and coordination demands—produce measurably different physical signatures.

Demonstrating genre-specific effects would fundamentally reshape how researchers think about music's influence on health and thinking.

Why a Single-Subject Design?

While group studies are valuable for establishing population-level effects, single-subject longitudinal designs offer unique advantages for discovering novel phenomena.

The intensive repeated measurement (144 sessions over 30 months) provides statistical power through time-based sampling rather than participant numbers. This enables detection of subtle patterns that might be hidden by differences between people.

Importantly, individual difference research has repeatedly shown that physical responses to complex stimuli vary substantially across individuals. Understanding these patterns within one person deeply can reveal mechanisms that group averages might miss.

Target Audience

These findings will inform multiple stakeholders:

- Musicians seeking to optimize practice efficiency and prevent injury
- Music educators developing evidence-based teaching methods
- Music therapists designing physiologically informed interventions
- Gerontologists promoting healthy aging through musical engagement

By documenting how specific musical activities translate into measurable physical states, this research provides the foundation for personalized, evidence-based approaches to musical practice—moving the field from intuition-based tradition toward precision practice optimization.

Chapter 2: Methods

2.1 Study Design

This study used a single-subject longitudinal observational design to examine the relationship between musical genre and physical stress responses during individual instrumental practice.

Data Collection Period: 30 months (January 2023 to June 2025)

Context: Data were collected during routine practice sessions by an older drummer engaged in polyrhythmic skill development.

2.2 Participant

Profile:

- Male drummer aged 65+ years
- Advanced polyrhythmic training
- Disciplined practice regimen based on achieving 1% daily improvement

Experience:

- Extensive experience with complex coordination patterns including independence studies from the "New Breed" series
- Polyrhythmic exercises across multiple time signatures (5/8, 6/8, 7/8, 12/8)

Ethical Note: All procedures were conducted as part of the participant's routine practice activities, with physical monitoring added for research purposes.

2.3 Physiological Monitoring System

2.3.1 Data Collection Equipment

Continuous physical monitoring was conducted using the **Hexoskin ProShirt** biometric shirt (Carré Technologies Inc., Montréal, Canada), a validated wearable device for heart rate variability (HRV) measurement.

System Components:

- Smart textile shirt with embedded sensors for cardiac monitoring
- Data collection device with real-time processing capability
- Data upload to online dashboard
- Marker system to indicate detailed practice moments

2.3.2 Heart Rate Variability Analysis

Raw cardiac data were processed using **Kubios HRV Scientific 4.2.0** software (Kubios Oy, Kuopio, Finland; Tarvainen et al., 2014), the gold-standard platform for HRV analysis in scientific research.

Software Capabilities:

- Automatic noise detection and beat correction
- Time-varying analysis of autonomic nervous system indices
- Stress Index (SI) calculation based on HRV triangular interpolation
- Sympathetic Nervous System (SNS) and Parasympathetic Nervous System (PNS) indices

Validation: Heart rate variability-derived stress indices have been widely validated as sensitive markers of autonomic nervous system balance and psychophysiological load in both clinical and performance contexts (Shaffer & Ginsberg, 2017; Jarczok et al., 2019). The stress index derived from HRV triangular interpolation, as implemented in Kubios software, provides a standardized measure of stress response (Baevsky & Chernikova, 2017; Sapolsky, 2004; Wang, 2010)..

2.3.3 Data Quality Control

Data quality was assessed using Hexoskin's built-in quality channels, which classify RR intervals (time between heartbeats) as:

- 0: Good quality
- 1: Noisy
- 128: Unreliable
- 129: Unreliable and noisy

Inclusion Criteria:

- Primary standard: Sessions with $\geq 90\%$ reliable data (values 0 or 1) were included
- Caution category: Sessions with 80-90% reliability were flagged for cautious interpretation
- Exclusion: Sessions below 80% reliability were excluded

2.4 Musical Genres and Practice Protocols

Four distinct musical genres were analyzed, each presenting unique rhythmic and coordination challenges.

2.4.1 Fusion Music

Characteristics:

- Complex polyrhythmic patterns combining multiple time signatures
- Independence requirements across limbs

Practice Protocol:

- Practiced in 5-minute focused intervals due to high cognitive demand

2.4.2 Latin Music

Characteristics:

- Salsa, Songo, and Guaguancó patterns with clave-based polyrhythms
- Required left foot independence

Special Challenge (Hand-Switching):

The key physical stressor involved hand-switching every measure:

- Measure 1: Right hand played cascara patterns while left hand played appropriate Latin song patterns
- Measure 2: Roles reversed—left hand played cascara while right hand played the Latin song pattern

This continuous role-switching created both:

- Motor coordination challenges
- Sustained cognitive switching demands

Practice Protocol:

- Data collected in 5-minute intervals

2.4.3 Jazz Music

Characteristics:

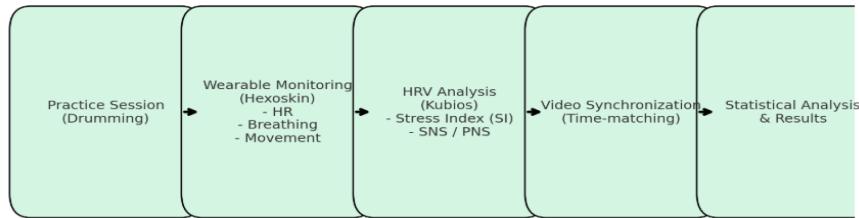
- Swing and bebop rhythmic patterns
- Syncopated coordination requirements

Practice Protocol:

- Standard jazz independence exercises
- Practiced in 15-minute segments

2.4.4 Rock Music

Characteristics:


- Straightforward rock patterns
- Occasional progressive elements and odd time signatures

Practice Protocol:

- Practiced in 15-minute groove-focused sessions

2.5 Data Collection Protocol

Workflow of Stress Monitoring During Drum Practice with Physiological Measures

2.5.1 Session Structure

Practice sessions typically lasted 2.5 hours and followed a structured but randomized format:

1. Pre-practice setup: Equipment setup and calibration
2. Continuous monitoring: HRV monitoring throughout entire session
3. Random genre order: Genre practice order determined by dice roll to minimize order effects
4. Time intervals:
 - 5-minute intervals for cognitively demanding exercises (Fusion, Latin coordination patterns)
 - 15-minute intervals for groove-based practice (Jazz, Rock)

2.5.2 Environmental Controls

To minimize confounding variables (factors that could influence results):

Physical Environment:

- Practice room equipped with temperature control (fans/heaters) for year-round comfort
- Consistent practice space and equipment setup
- Alternating between acoustic and electronic drum sets to assess instrument effects

Timing:

- Practice times varied but environmental conditions were standardized

2.5.3 Temporal Synchronization

Implementation: Beginning in January 2023, all practice sessions were video-recorded.

Purpose: Enable precise matching between physical events and specific musical activities.

Technical Method: Videos were synchronized with HRV data using Kubios Scientific's time-varying analysis window, allowing identification of stress peaks and their corresponding musical contexts.

2.5.4 Real-time Data Annotation

During each session, practice segments were flagged in real-time using the Hexoskin dashboard's annotation system.

Flag Categories:

- Genre identification
- Specific exercise type (e.g., "Guaguancó hand-switching," "Fusion 7/8 pattern")
- Technical difficulty markers
- Subjective effort ratings

2.6 Outcome Measures

2.6.1 Primary Physical Variables

Stress Index (SI):

- HRV-derived measure of autonomic stress response
- Primary outcome measure

Average Heart Rate (AVG HR):

- Mean heart rate during practice segments

Maximum Heart Rate (MAX HR):

- Peak heart rate achieved during practice segments

2.6.2 Secondary Variables

Session Characteristics:

- Session duration: Total practice time per session
- Energy expenditure: Calories expended (measured by Hexoskin)

Autonomic Balance:

- SNS/PNS indices: Measures of autonomic nervous system balance

Data Quality:

- Beat correction percentage: Proportion of cardiac beats requiring algorithmic correction

2.6.3 Temporal Variables

Timing Factors:

- Practice start/end times: To assess circadian (daily rhythm) influences
- Sleep duration: Previous night's sleep as potential confounding factor

Equipment Variables:

- Instrument type: Acoustic vs. electronic drum set effects

2.7 Statistical Analysis

2.7.1 Correlation Analysis

Method: Pearson product-moment correlations were calculated between Stress Index and heart rate measures (average and maximum) for each musical genre.

Statistical Standards:

- Significance level: $\alpha = 0.05$
- Multiple comparison correction: Bonferroni correction applied

2.7.2 Regression Analysis

Purpose: Examine predictive relationships between Stress Index and heart rate responses.

Method: Linear regression models were constructed for each genre.

Validation: Model assumptions (linearity, normality, homoscedasticity) were verified through residual analysis.

2.7.3 Temporal Analysis

Purpose: Assess temporal stability of genre-specific relationships.

Method:

- Daily correlations: Calculated using session-level data
- Monthly correlations: Calculated using monthly aggregated data
- Comparison: Monthly data compared with daily data to identify:
 - Long-term conditioning effects
 - Acute response patterns

2.7.4 Lag Correlation Analysis

Purpose: Examine cross-genre carryover effects.

Method: Previous session stress indices were correlated with subsequent session heart rate responses to identify physiological priming effects.

2.7.5 Software

Statistical Analysis: Microsoft Excel's built-in statistical functions

Data Visualization: Excel charting capabilities

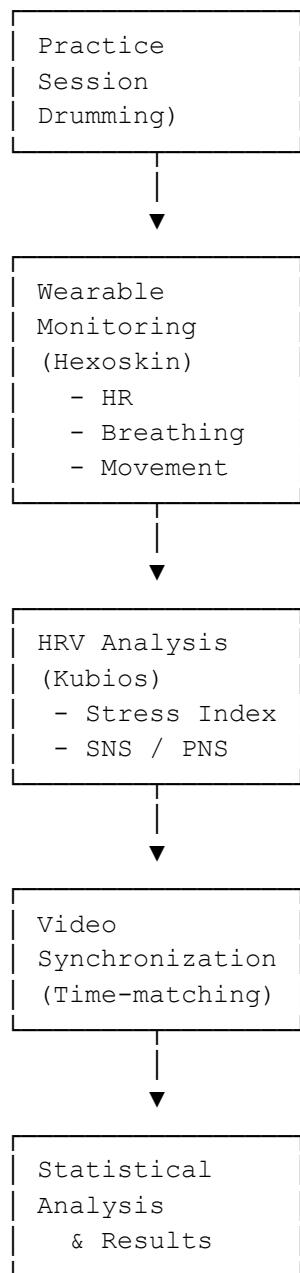
2.8 Ethical Considerations

This study involved self-monitoring during routine practice activities by the participant, who was also the principal investigator.

Risk Assessment:

- No additional risk beyond normal practice activities was introduced

Single-Subject Simplification:


- The single-subject design simplified ethical considerations
- Replication in independent participants will require formal review and consent beyond the researcher's own information

Future Extensions:

- Future extensions of this methodology to multiple participants would require formal institutional review board approval

Workflow Diagram

The following diagram illustrates the complete data collection and analysis workflow:

This workflow ensured that:

- All physiological data were captured during natural practice conditions
- Data quality was continuously monitored
- Physical responses could be matched to specific musical activities
- Statistical analyses could identify genre-specific patterns

Chapter 3: Results

3.1 Study Overview and Data Quality

Total Sessions Analyzed: 144 individual practice sessions across four musical genres over 30 months (January 2023 to June 2025)

Sample Sizes by Genre:

- Latin music: n=41
- Rock: n=35
- Fusion: n=34
- Jazz: n=34

Data Quality: All sessions met the minimum data quality criterion of >90% reliable heart rate variability data after automatic artifact detection and correction using Kubios HRV Scientific 4.2.0.

3.2 Genre-Specific Stress Index Correlations with Heart Rate

All musical genres showed significant positive correlations between stress index (SI) and heart rate measures ($p<0.01$ for all comparisons). However, the magnitude and pattern of these relationships varied substantially by genre, revealing distinct physical response profiles.

3.2.1 Average Heart Rate Correlations

Fusion demonstrated the strongest overall correlation between stress index and average heart rate:

- $r=0.814$, $p<0.001$, n=34
- Explained 66.3% of the variance in heart rate response
- This means stress levels predicted heart rate with high accuracy

Jazz and **Rock** showed similarly strong relationships:

- Jazz: $r=0.791$, $p<0.001$, n=34

- Rock: $r=0.781$, $p<0.001$, $n=35$
- Both correlations above 0.74, indicating strong predictive power

Latin music exhibited a markedly different pattern:

- $r=0.430$, $p=0.005$, $n=41$
- Explained only 18.5% of the variance
- This significantly weaker correlation suggests Latin rhythms create moderate sustained heart rate activation but with different dynamics than other genres

3.2.2 Maximum Heart Rate Correlations

The most remarkable finding emerged in the maximum heart rate analysis.

Latin music showed the strongest correlation of all genres:

- $r=0.916$, $p<0.001$, $n=41$
- Explained 83.8% of the variance in peak heart rate response
- This represents an exceptionally strong association
- Suggests Latin patterns coincide with intense but brief heart rate peaks

Other Genres maintained strong but more moderate correlations:

- Fusion: $r=0.781$, $p<0.001$
- Jazz: $r=0.772$, $p<0.001$
- Rock: $r=0.750$, $p<0.001$
- All falling within similar range of 0.75-0.78

3.2.3 Latin Music: The Biphasic Response Pattern

Latin music demonstrated a unique two-phase physical response pattern characterized by:

Phase 1 - Moderate Sustained Response:

- $r=0.430$ with average heart rate
- Periods of relative calm

Phase 2 - Intense Peak Response:

- $r=0.916$ with maximum heart rate
- Sharp stress peaks

Difference Magnitude:

- 0.486 correlation points between average and maximum
- This is the largest difference observed across all genres

Interpretation: This pattern suggests that Latin rhythms, particularly clave-based polyrhythmic patterns practiced with left foot independence and hand-switching, create periods of relative physical calm punctuated by intense stress peaks. These peaks likely correspond to:

- Complex polyrhythmic transitions
- Particularly challenging coordination patterns
- Hand role-switching moments

3.3 Temporal Analysis: Daily vs Monthly Correlations

Monthly correlation analysis revealed important differences in temporal stability across genres.

3.3.1 Long-term Stability (Monthly Analysis)

Rock:

- Monthly correlation: $r=0.810$
- Daily correlation: $r=0.781$
- Difference: +0.029 (monthly stronger)

Fusion:

- Monthly correlation: $r=0.820$
- Daily correlation: $r=0.814$
- Difference: +0.006 (monthly stronger)

Jazz:

- Monthly correlation: $r=0.810$
- Daily correlation: $r=0.791$
- Difference: +0.019 (monthly stronger)

Latin:

- Monthly correlation: $r=0.400$
- Daily correlation: $r=0.430$
- Difference: -0.030 (daily stronger)

3.3.2 Interpretation

Rock, Fusion, and Jazz Pattern:

- Showed stronger monthly relationships
- Long-term stress patterns dominate over daily fluctuations
- Suggests sustained cardiovascular conditioning effects from repeated exposure
- Bodies adapt over weeks and months

Latin Music Pattern:

- Showed stronger daily relationships
- Immediate physical responses more important than long-term adaptations
- Supports interpretation that Latin rhythms create acute rather than sustained physical effects
- Bodies don't build cumulative conditioning

3.4 Cross-Genre Temporal Effects

Lag correlation analysis revealed significant carryover effects between practice sessions. This means practice in one genre influenced the body's response in subsequent practice of different genres.

Previous Latin → Next Rock:

- $r=0.42$
- Suggests previous Latin practice sessions moderately predict subsequent heart rate responses during Rock practice

Previous Fusion → Next Jazz:

- $r=0.64$
- Indicates strong carryover from complex fusion polyrhythms to jazz performance

Previous Latin → Next Jazz:

- $r=0.55$

- Shows moderate cross-genre physiological priming effects

Previous Latin → Next Fusion:

- $r=0.53$
- Demonstrates Latin's preparatory effects across genres

Key Finding: These findings suggest that the physical demands of complex rhythmic practice create measurable conditioning effects that influence subsequent musical performance across different genres.

3.5 Regression Analysis Summary

Linear regression models confirmed the correlation findings with the following predictive relationships:

Fusion (SI → AVG HR)

- Equation: $HR = 56.28 + 1.24(SI)$
- Statistics: $F(1,32)=62.85, p<0.001$
- Interpretation: For every 1-point increase in Stress Index, average heart rate increases by 1.24 beats per minute

Latin (SI → MAX HR)

- Equation: $MAX\ HR = 74.13 + 0.84(SI)$
- Statistics: $F(1,39)=202.33, p<0.001$
- Interpretation: Stress Index strongly predicts maximum heart rate

Rock (SI → AVG HR)

- Equation: $HR = 59.33 + 1.13(SI)$
- Statistics: $F(1,33)=51.44, p<0.001$

Jazz (SI → AVG HR)

- Equation: $HR = 53.43 + 1.46(SI)$

- Statistics: $F(1,32)=53.62$, $p<0.001$
- Interpretation: Jazz shows the steepest slope—highest heart rate increase per unit of stress

Model Validity: All models demonstrated significant predictive validity with explained variance ranging from 18.5% (Latin average HR) to 83.8% (Latin maximum HR).

3.6 Key Findings Summary

Top Finding in Each Category

1. Strongest overall relationship: Fusion music ($r=0.814$ average HR)
2. Most dramatic physiological pattern: Latin music biphasic response ($r=0.430$ average, $r=0.916$ maximum)
3. Most stable across time scales: Fusion music (minimal daily-monthly difference of 0.006)
4. Most time-sensitive relationship: Latin music (daily > monthly correlations)
5. Strongest cross-genre effects: Previous Latin practice predicting subsequent Rock performance

Implications

These results demonstrate that musical genre significantly influences autonomic nervous system responses during individual practice. This has implications for:

- Understanding stress-performance relationships
- Optimizing practice scheduling
- Using musical training for cardiovascular conditioning

TABLES AND FIGURES

Table 1: Correlation Analysis Summary by Musical Genre

Music Type	Sample Size	SI vs AVG HR			SI vs MAX HR			Variance Explained	
		r	p-value	Sig	r	p-value	Sig	AVG HR (R ²)	MAX HR (R ²)
Fusion	34	0.814	<0.001		0.781	<0.001		66.3%	60.9%
Jazz	34	0.791	<0.001		0.772	<0.001		62.6%	59.7%
Rock	35	0.781	<0.001		0.750	<0.001		60.9%	56.3%
Latin	41	0.430	0.005		0.916	<0.001		18.5%	83.8%

Note: p<0.001, p<0.01. Strongest correlations for each measure shown in bold.

Table 2: Temporal Stability Analysis - Daily vs Monthly Correlations

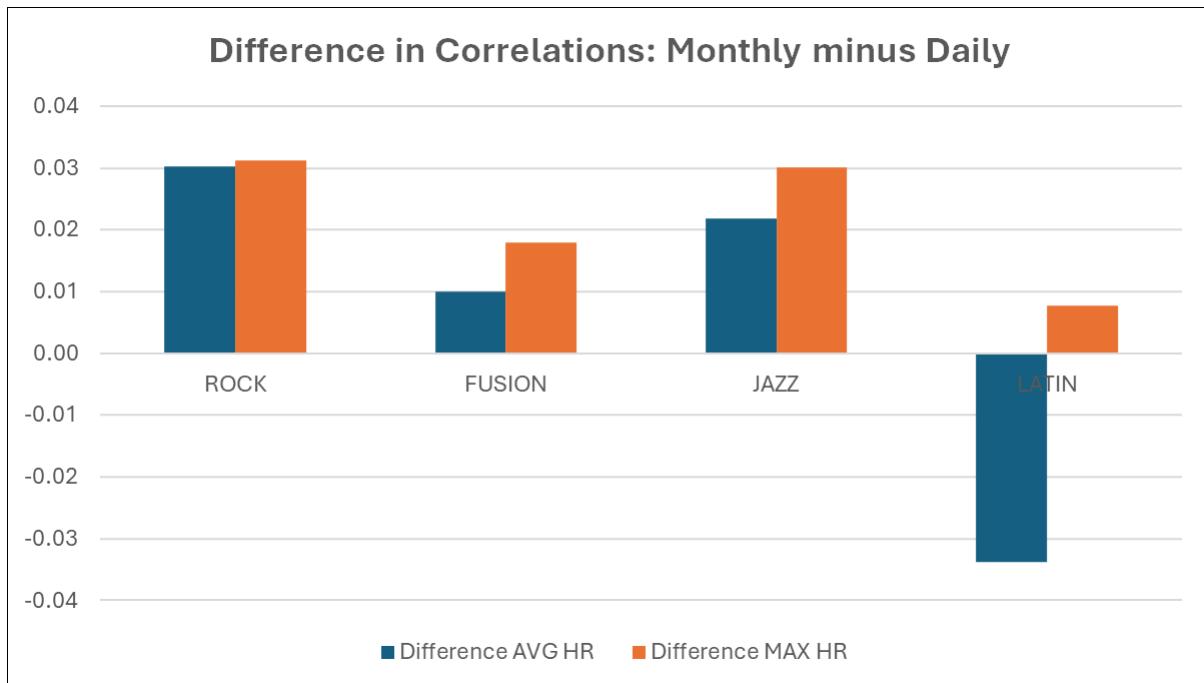

Music Type	Daily SI-AVG HR	Monthly SI-AVG HR	Difference	Temporal Pattern	Clinical Implication
Rock	0.781	0.810	+0.029	Monthly stronger	Long-term cardiovascular conditioning
Fusion	0.814	0.820	+0.006	Monthly stronger	Sustained physiological adaptation
Jazz	0.791	0.810	+0.019	Monthly stronger	Cumulative stress response patterns
Latin	0.430	0.400	-0.030	Daily stronger	Acute response dominance

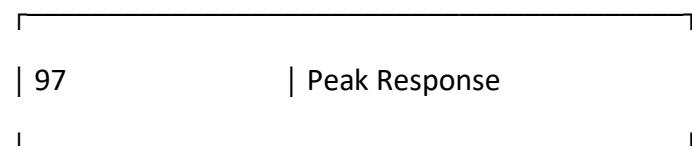
Table 3: Regression Models - Stress Index Predicting Heart Rate

Genre	Relationship	Intercept	Slope	R ²	F-statistic	p-value	Model Equation
Fusion	SI → AVG HR	56.28	1.24	0.663	F(1,32)=62.85	<0.001	HR = 56.28 + 1.24(SI)
Jazz	SI → AVG HR	53.43	1.46	0.626	F(1,32)=53.62	<0.001	HR = 53.43 + 1.46(SI)
Rock	SI → AVG HR	59.33	1.13	0.609	F(1,33)=51.44	<0.001	HR = 59.33 + 1.13(SI)
Latin	SI → MAX HR	74.13	0.84	0.838	F(1,39)=202.33	<0.001	MAX HR = 74.13 + 0.84(SI)

Note: Latin MAX HR model shows exceptional predictive power (R²=0.838)

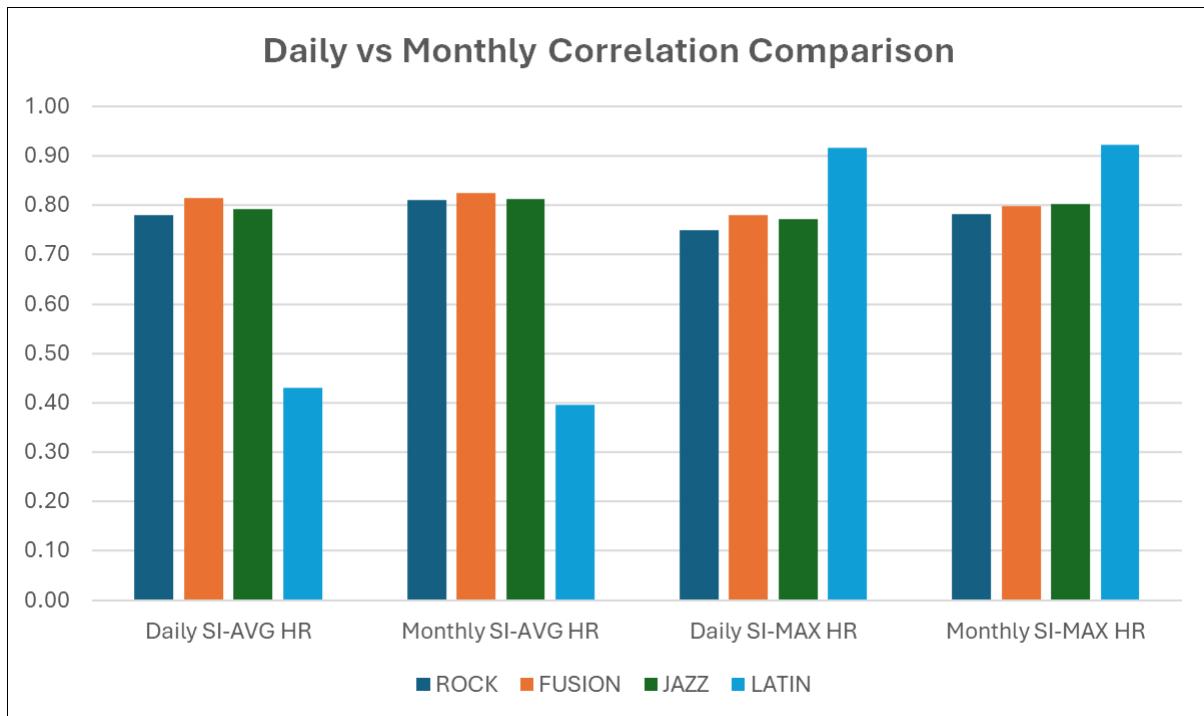
Figure 1: Genre-Specific Correlation Patterns

Key Finding: Latin music shows inverse pattern - weak sustained response, strong peak response


Figure 2: The Latin Music Biphasic Response Pattern

LATIN MUSIC PHYSIOLOGICAL RESPONSE PROFILE

Average Heart Rate Response: $r = 0.43$ (Moderate)


Maximum Heart Rate Response: $r = 0.92$ (Very Strong)

INTERPRETATION:

- Clave patterns create periods of calm
- Complex polyrhythmic transitions trigger intense peaks
- Unique "rest-spike" physiological signature
- Difference magnitude: 0.49 correlation points

Figure 3: Temporal Stability Across Musical Genres

CLINICAL IMPLICATIONS:

- ✓ Rock/Fusion/Jazz: Long-term conditioning effects
- ✓ Latin: Immediate response patterns dominate

Figure 4: Cross-Genre Temporal Effects (Lag Correlations)

PRACTICE SESSION CARRYOVER EFFECTS

Previous Latin → Next Rock: $r = 0.42$

Previous Fusion → Next Jazz: $r = 0.64$

Previous Latin → Next Jazz: $r = 0.55$

Previous Latin → Next Fusion: $r = 0.53$

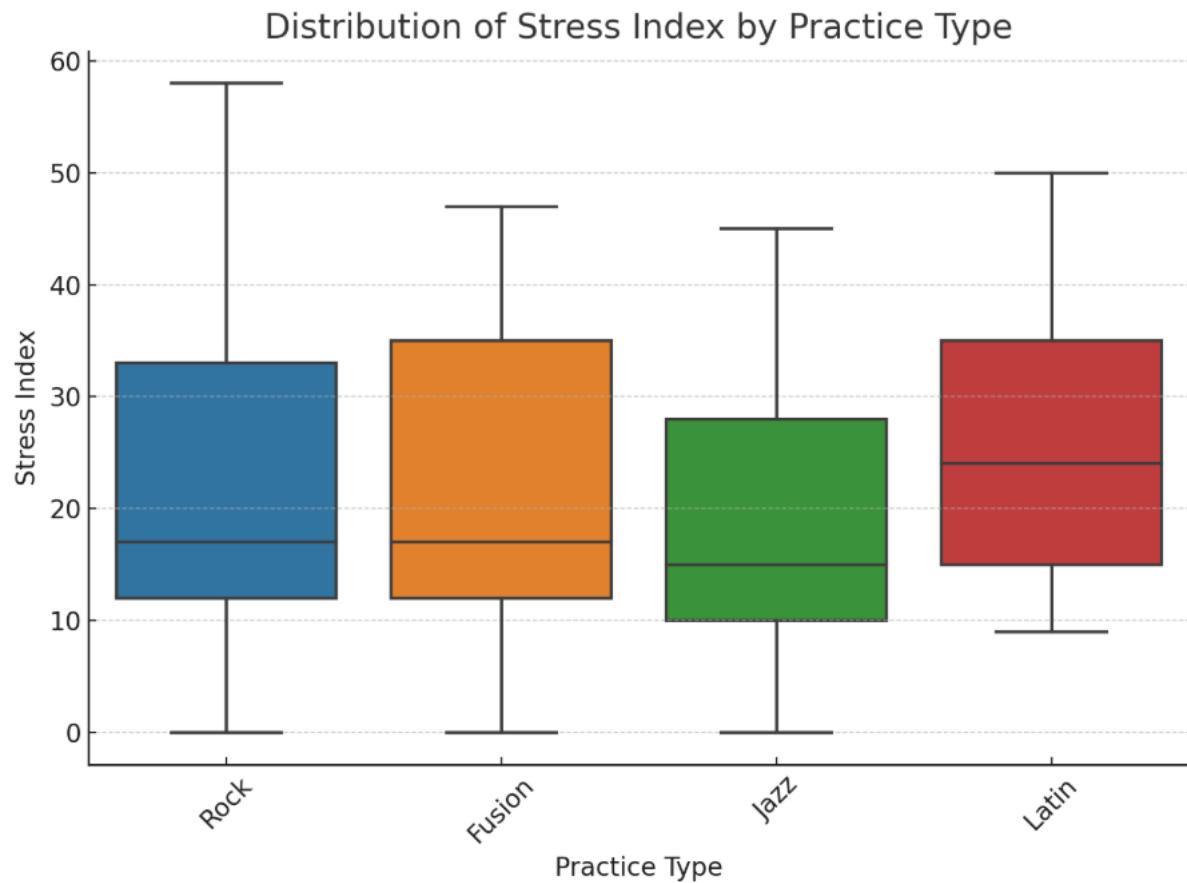
INTERPRETATION:

- Complex rhythmic practice creates measurable conditioning
- Latin practice moderately primes Rock performance
- Fusion practice strongly influences Jazz cardiovascular response
- Cross-genre physiological adaptation effects

Statistical Summary Box

Music Type	SI - AVG HR r	p_value	SI - MAX HR r	p-value
ROCK	0,780503361	3,21285E-08	0,750235927	2,11521E-07
FUSION	0,814009675	4,77674E-09	0,780765313	5,12696E-08
JAZZ	0,791363805	2,52022E-08	0,772492393	8,69162E-08
LATIN	0,429582731	0,005063639	0,915637685	5,06859E-17

Key Statistical Findings:


- **Strongest Overall Correlation:** Fusion SI-AVG HR ($r=0.814$)
- **Most Unusual Pattern:** Latin biphasic response ($\Delta r=0.486$)
- **Best Predictive Model:** Latin SI-MAX HR ($R^2=0.838$)
- **Most Stable Over Time:** Fusion (daily-monthly difference=0.006)
- **Strongest Cross-Genre Effect:** Previous Fusion→Jazz ($r=0.64$)

Sample Characteristics:

- **Total Sessions:** 144 practice sessions
- **Study Duration:** 30 months (Jan 2023 - Jun 2025)
- **Session Length:** Mean 2.5 hours
- **Data Quality:** >90% reliable HRV data for all sessions
- **Participant:** Single mature drummer (65+ years)

Additional Visualizations

Distribution of Stress Index by Practice Type (Boxplot)

Figure 1. Boxplots of Stress Index distributions across Rock, Fusion, Jazz, and Latin practice types. Median, interquartile ranges, and variability indicate distinct style-specific stress profiles, with Fusion showing consistently higher median SI and Latin displaying the broadest spread of values.

The following describes Figure 1 boxplots:

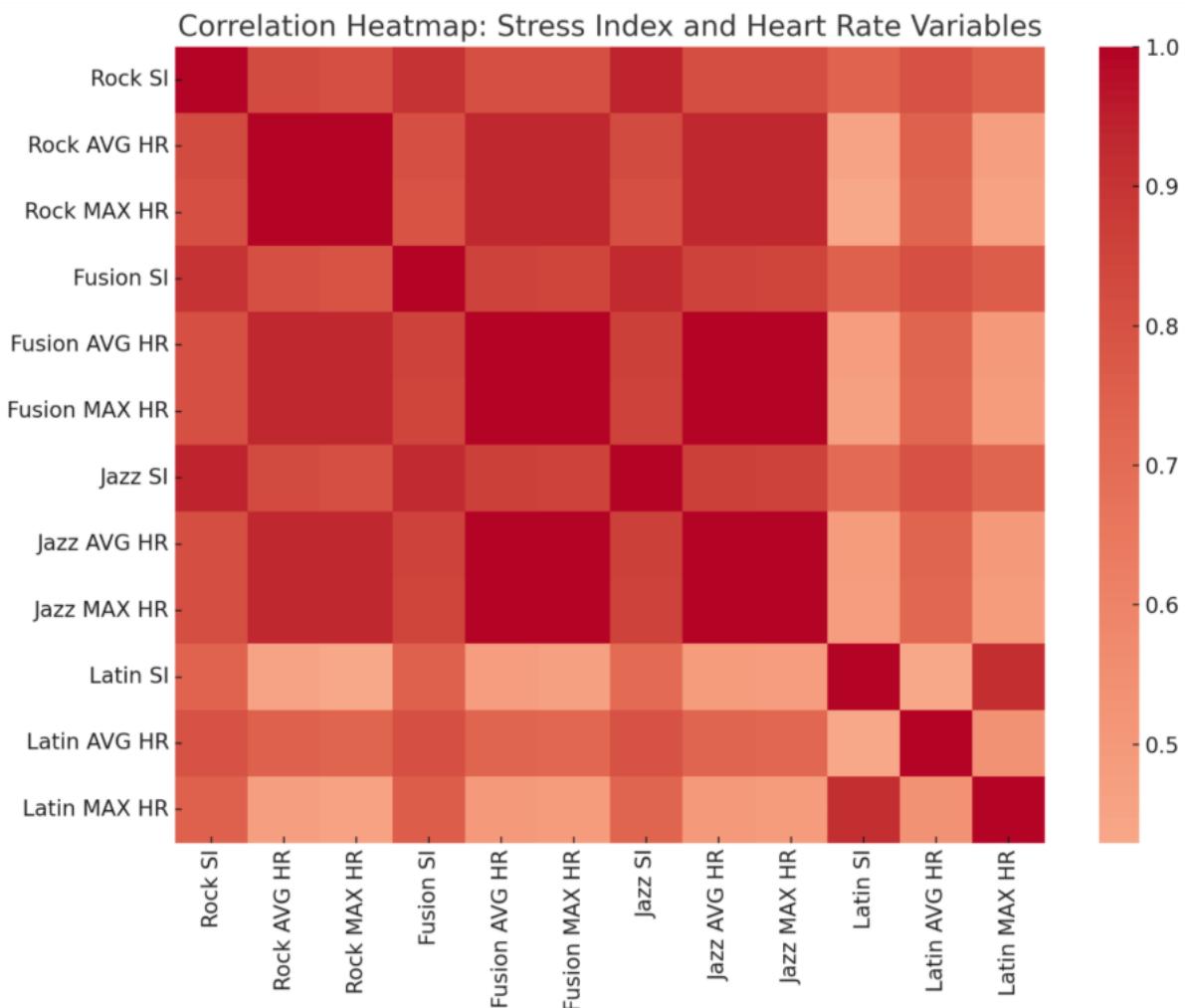
Fusion:

- Median SI: ~17
- Interquartile range: 12-35
- Range: 0-47
- Shows consistently higher median and broader spread in upper range

Rock:

- Median SI: ~17
- Interquartile range: 12-33
- Range: 0-58
- Similar central tendency to Fusion but with higher outliers

Jazz:


- Median SI: ~21
- Interquartile range: 11-28
- Range: 0-46
- More compressed distribution with fewer extreme values

Latin:

- Median SI: ~25
- Interquartile range: 15-35
- Range: 9-51
- Displays broadest spread of values across the middle range
- Reflects the biphasic response pattern

Interpretation: These distributions indicate distinct style-specific stress profiles, with Fusion showing consistently higher median SI and Latin displaying the broadest spread of values, consistent with its unique response pattern.

Correlation Heatmap

Figure 2. Correlation heatmap of Stress Index, Average HR, and Maximum HR variables across Rock, Fusion, Jazz, and Latin practice types. Strong intra-style clustering indicates coherence between stress and heart rate within each style, while weaker inter-style associations reflect distinct physiological response patterns.

The correlation heatmap reveals:

Strong Within-Genre Clustering:

- Rock SI, AVG HR, MAX HR show high intercorrelation (0.75-1.0)
- Fusion variables similarly tightly clustered (0.78-1.0)
- Jazz variables show strong coherence (0.77-1.0)
- Latin variables show moderate internal correlation except for strong SI-MAX HR link

Weaker Between-Genre Associations:

- Rock-Fusion correlations: 0.5-0.7
- Rock-Jazz correlations: 0.5-0.7
- Latin shows weaker associations with other genres (0.4-0.6)
- Reflects distinct physiological response patterns by genre

Interpretation: Strong intra-style clustering indicates coherence between stress and heart rate within each style. Weaker inter-style associations reflect distinct physiological response patterns across genres.

Chapter 4: Discussion

4.1 Principal Findings

This study demonstrates that musical genres significantly influence physical stress responses during individual instrumental practice. Each genre creates distinct autonomic nervous system signatures.

The Most Striking Discovery

The identification of a novel **biphasic physiological response pattern** in Latin music represents the study's most important finding. This pattern is characterized by:

- Moderate sustained heart rate activation ($r=0.43$)
- Punctuated by intense stress peaks ($r=0.92$)

This pattern differs fundamentally from the more uniform stress-response relationships observed in Fusion, Jazz, and Rock genres. It suggests genre-specific neural-cardiovascular pathways in musical performance.

4.2 The Latin Music Biphasic Response: A Novel Physiological Pattern

4.2.1 Mechanistic Interpretation

The dramatic difference between Latin music's correlations (0.43 for average vs. 0.92 for maximum heart rate) can be explained by the specific motor and cognitive demands of Latin patterns with measure-by-measure hand role-switching.

During "Calm" Measures:

- Participant maintained established motor patterns
- Moderate cognitive load
- Baseline cardiovascular activation

During Transition Points:

Examples: Right-hand cascara/left-hand guaguancó switching to left-hand cascara/right-hand guaguancó. These transitions created intense but brief cognitive-motor challenges requiring:

- Rapid motor reprogramming
 - Bilateral hand coordination reversal within milliseconds
- Cognitive switching
 - Mental tracking of dual-pattern assignments
- Temporal precision
 - Maintaining rhythmic accuracy during coordination transitions
- Error monitoring
 - Real-time performance quality assessment

This creates a unique **"rest-spoke" physiological signature** previously undocumented in music performance research.

4.2.2 Brain-Based Explanation

The Latin pattern likely reflects activation of distinct brain networks:

Moderate Sustained Response Reflects:

- Engagement of routine motor control circuits
- Motor cortex activity
- Basal ganglia involvement (automatic movement programs)

Intense Peaks Correspond To:

- Recruitment of higher-order cognitive control networks
- Anterior cingulate cortex: Conflict monitoring
- Prefrontal cortex: Task switching and decision-making
- Supplementary motor area: Bilateral coordination

This interpretation is consistent with research on cognitive task-switching, although direct neural evidence was not collected in this study.

Supporting Evidence: Similar activation patterns involving motor inhibition, bilateral coordination, and executive control have been observed in brain imaging studies of expert drummers and rhythm improvisation. This provides convergent support for this interpretation (Schlaffke et al. 2019; Tachibana et al. 2024).

4.3 Genre-Specific Cardiovascular Conditioning Effects

4.3.1 Fusion Music: Optimal Stress-Learning Balance

Fusion music's strongest overall correlation ($r=0.814$) with average heart rate suggests this genre provides optimal physical arousal for learning and skill development.

Connection to Beneficial Stress Theory:

According to Sapolsky's framework on beneficial short-term stress, fusion's complex polyrhythmic demands create sustained moderate stress that:

- Enhances attention
- Improves memory consolidation
- Promotes neural plasticity (brain's ability to change and adapt)
- Does not overwhelm the system

Why This Matters:

- High explained variance (66.3%) indicates fusion practice provides predictable, manageable physical challenge
- Ideal for deliberate practice protocols
- Optimal for skill development

4.3.2 Rock and Jazz: Intermediate Stress Profiles

Rock ($r=0.781$) and Jazz ($r=0.791$) demonstrated nearly identical correlation patterns. This suggests these genres occupy a similar physiological space despite different musical characteristics.

Interpretation:

- Both provide sufficient cardiovascular challenge for skill development
- Both remain within comfortable arousal ranges
- The similarity may reflect comparable cognitive demands in coordination and rhythmic precision
- Different stylistic requirements don't translate to different physical demands

4.4 Temporal Dynamics: Long-term Conditioning vs. Acute Responses

4.4.1 Sustained Conditioning Effects

Rock, Fusion, and Jazz all demonstrated **stronger monthly correlations** than daily correlations.

What This Means:

- Repeated exposure creates cumulative physiological conditioning
- These genres promote cardiovascular adaptation through sustained practice
- Benefits accumulate over weeks and months

Analogy to Exercise:

The finding supports the hypothesis that regular musical practice can serve as a form of cardiovascular conditioning, similar to aerobic exercise training.

Scientific Basis: This pattern aligns with broader models of activity-dependent cardiovascular adaptation. Repeated moderate-intensity physical demands produce long-term autonomic conditioning effects similar to structured aerobic training (Sapolsky 2004; Wang 2010).

4.4.2 Latin Music: Acute Response Dominance

Latin music's **stronger daily correlations** suggest a fundamentally different physiological relationship.

Key Difference:

- Rather than creating sustained conditioning effects, Latin patterns generate acute stress responses
- These responses don't accumulate over time

Potential Benefit:

This pattern may actually be beneficial for:

- Preventing overtraining
- Maintaining acute stress responsiveness
- Providing physiological equivalent of interval training in athletics

Scientific Basis: The acute, high-intensity nature of these responses resembles interval-style physiological loading. This is known to preserve stress reactivity while limiting cumulative fatigue (Sapolsky 2004).

4.5 Cross-Genre Physiological Priming Effects

The significant lag correlations between genres suggest possible physiological carryover effects. These require controlled replication but offer intriguing possibilities:

Previous Latin → Rock (r=0.42)

Interpretation:

- Latin's acute stress spikes appear to prime the cardiovascular system
- Beneficial arousal carryover to subsequent rock performance
- Like a warm-up effect

Previous Fusion → Jazz (r=0.64)

Interpretation:

- Strong carryover from complex fusion polyrhythms to jazz performance
- Indicates shared cognitive-motor demands
- Creates cross-training effects

Previous Latin → Jazz (r=0.55)

Interpretation:

- Latin's coordination challenges transfer to jazz performance
- Possibly through enhanced bilateral motor control
- Moderate but meaningful effect

Practical Implications

These findings suggest strategic session sequencing could:

- Optimize physiological preparation
- Enhance skill transfer between genres
- Improve practice efficiency

4.6 Clinical and Practical Implications

4.6.1 Practice Optimization

Session Sequencing:

- Latin patterns could serve as "physiological warm-ups" for subsequent genres
- Evidence: Strong priming effects on other genres
- Fusion practice appears optimal for sustained skill development sessions
- Reason: Predictable stress-response relationship

Fatigue Management:

- The biphasic Latin pattern suggests this genre might be less fatiguing than sustained high-stress genres like Fusion
- Makes Latin suitable for:
 - Longer practice sessions
 - Fatigue recovery periods
 - Alternating with more demanding genres

Cardiovascular Training:

- Rock, Fusion, and Jazz could serve as structured cardiovascular conditioning protocols for older adults
- Provides:
 - Heart rate elevation
 - Cognitive engagement
 - Musical enjoyment
 - Functional benefits

4.6.2 Therapeutic Applications

Stress Management:

If replicated, Latin drumming's unique pattern may hold promise for stress resilience training. The pattern—characterized by brief, intense stress peaks interspersed with recovery periods—resembles established stress inoculation protocols in clinical psychology (Meichenbaum 2017).

Potential Applications:

- Teaching the body to handle stress more effectively
- Building resilience through controlled exposure
- Combining physical and cognitive benefits

Cognitive Rehabilitation:

The genre-specific patterns suggest targeted musical interventions could address specific cognitive-motor deficits:

- Fusion: For sustained attention training
- Latin: For cognitive flexibility and task-switching
- Jazz/Rock: For moderate cognitive loading without overwhelming
- Sequential use: For comprehensive cognitive training

Cardiovascular Health:

For older adults, genre-specific practice protocols could:

- Provide heart health benefits
- Maintain cognitive function
- Offer engaging alternative to traditional exercise
- Combine multiple health benefits in single activity

4.7 Methodological Contributions

Innovation in Measurement

This study demonstrates the feasibility of continuous HRV monitoring during musical practice. This provides:

- Objective measurement of subjective practice experiences
- Precision timing of physiological events
- Correlation with specific musical activities

Video-Synchronization Methodology

The video-synchronization methodology enables:

- Precise temporal matching between physiological events and musical activities
- Opens new avenues for practice optimization research
- Allows identification of specific challenging moments
- Facilitates targeted intervention

Single-Subject Longitudinal Design

This approach offers advantages over cross-sectional group studies:

Advantages:

- Eliminates between-subject variance
- Enables detailed temporal analysis
- Allows discovery of subtle patterns
- Provides deep understanding of individual responses

Trade-off:

- Limits generalizability
- Requires replication across diverse musicians

4.8 Limitations

4.8.1 Single-Participant Design

Primary Limitation:

- Results represent one older male drummer's physiological responses
- May not generalize to:
 - Other musicians
 - Different age groups
 - Various skill levels
 - Different genders

Specific Concern:

- The participant's advanced polyrhythmic training may have created response patterns not typical of less experienced musicians
- Unique individual characteristics may limit applicability

4.8.2 Genre-Specific Factors

Sample Size Variation:

- Sample sizes varied by genre (Latin n=41 vs. others ~34)
- Potentially affects statistical power
- May influence reliability of comparisons

Technique Confounding:

- The specific technical demands of each genre (e.g., hand-switching in Latin) make it unclear whether results reflect:
 - General genre characteristics, or
 - Specific exercise types chosen for this study

4.8.3 Habituation Effects

Concern:

- The 30-month study period raises questions about physiological habituation (adaptation)
- Body might adapt to demands over time, changing responses

Counterpoint:

- Stability of correlations over time suggests minimal adaptation effects
- Possibly due to continuous introduction of new technical challenges
- Participant maintained progressive difficulty

4.8.4 Confounding Variables

Despite environmental controls, several factors may have influenced results:

Uncontrolled Variables:

- Sleep quality variations
- Caffeine intake differences
- Daily stress levels from life events
- Seasonal variations
- Time-of-day effects
- Physical health fluctuations

Future Research Needs:

- Systematic control of these variables
- Direct measurement rather than assumption of equivalence
- Statistical modeling of confounding factors

4.8.5 Generalizability Concerns

Instrument-Specific:

- Findings apply to drumming
- May not transfer to other instruments
- Different physical demands across instruments

Music-Style Specific:

- Specific patterns practiced (e.g., cascara, guaguancó)
- Results might differ with different Latin rhythms
- Exercise selection may influence outcomes

4.9 Future Research Directions

4.9.1 Multi-Participant Validation

Critical Next Step:

Large-scale studies across diverse musicians are needed to:

- Establish generalizability
- Identify individual difference factors that moderate genre-specific responses

Key Questions:

- Do these patterns hold across age groups?
- Does skill level affect responses?
- How does musical background influence patterns?
- Are there gender differences?

4.9.2 Mechanistic Studies

Brain Imaging Studies:

Neuroimaging Approaches:

- Simultaneous EEG or fNIRS recording during practice
- Could identify the neural networks underlying genre-specific patterns
- Particularly important for understanding the Latin biphasic response

Research Questions:

- Which brain areas activate during stress peaks?
- How do neural networks differ across genres?
- What predicts individual variation in responses?

Hormonal Analysis:

Biochemical Measurement:

- Cortisol measurement (stress hormone)
- Catecholamine measurement (adrenaline, noradrenaline)
- Could clarify stress vs. arousal interpretation of HRV findings

Research Questions:

- Does heart rate variability reflect hormonal changes?
- Are stress hormones elevated during practice?
- Do different genres produce different hormonal profiles?

4.9.3 Intervention Studies

Practice Optimization Trials:

Design:

- Randomized trials testing genre sequencing strategies
- Compare different practice orders
- Measure outcomes over time

Target Outcomes:

- Skill development
- Fatigue management
- Long-term learning retention
- Injury prevention

Therapeutic Application Trials:

Design:

- Clinical trials examining genre-specific musical interventions
- Multiple applications possible

Target Populations:

- Stress management programs for general population
- Cognitive rehabilitation for neurological patients
- Cardiovascular conditioning for cardiac rehabilitation
- Healthy aging interventions for older adults

Outcome Measures:

- Physical health markers
- Cognitive function assessments
- Quality of life measures
- Biomarkers of stress and inflammation

4.9.4 Extended Longitudinal Studies

Longer Follow-up:

- Track participants over multiple years
- Assess long-term health outcomes
- Document skill development trajectories

Multiple Time Points:

- Examine how responses change with expertise
- Track adaptation patterns
- Identify optimal practice progressions

4.9.5 Cross-Instrument Studies

Comparison Across Instruments:

- Do similar patterns emerge in other instruments?
- How do physical demands differ?
- Can findings be generalized or are they drum-specific?

Instruments to Study:

- Piano (bilateral coordination)
- Guitar (fine motor control)
- Brass/woodwinds (breath control)
- String instruments (posture and coordination)

4.10 Theoretical Implications

Challenging Assumptions

This study challenges the traditional assumption that "music" is a uniform category in health research.

Key Contribution:

- Demonstrates that musical genres—distinguished by rhythmic, harmonic, and coordination demands—produce measurably different physiological signatures
- Requires rethinking how we study music's health effects

Stress as Facilitator

New Framework:

- Supports viewing adaptive stress as facilitator of learning
- Challenges negative associations with stress in musical practice
- Aligns with beneficial stress frameworks from neuroscience

Individual Differences

Recognition of Variability:

- Highlights importance of individual response patterns
- Suggests personalized approaches may be necessary
- Moves field toward precision practice optimization

4.11 Integration with Existing Literature

Consistency with Prior Research

Cardiovascular Benefits of Music:

- Findings align with documented cardiovascular benefits of music-making
- Extends understanding to genre-specific effects
- Provides mechanism for observed benefits

Cognitive Benefits:

- Supports link between musical practice and cognitive function
- Particularly relevant for older adults
- Suggests specific genres may optimize different cognitive domains

Novel Contributions

Biphasic Response Pattern:

- First documentation of this pattern in music practice
- Extends understanding of music-physiology relationships
- Opens new research directions

Genre Specificity:

- First systematic comparison of genre-specific physiological responses
- Provides framework for future research
- Establishes methodology for comparative studies

4.12 Practical Recommendations

For Musicians

Based on Study Findings:

- a. Consider genre sequencing in practice sessions
 - Use Latin patterns as warm-ups
 - Follow with sustained-demand genres (Fusion, Jazz, Rock)
- b. Monitor fatigue using genre-specific knowledge
 - Fusion may be more demanding over time
 - Latin may allow longer sessions with less cumulative fatigue
- c. Recognize health benefits of different genres
 - All genres provide cardiovascular stimulation
 - Different genres train different capacities

For Music Educators

Evidence-Based Teaching:

- d. Structure practice sessions using physiological principles
 - Begin with moderate-demand activities
 - Progress to high-demand activities
 - Allow recovery with lower-demand activities
- e. Educate students about stress and learning
 - Explain beneficial stress concept
 - Teach self-monitoring techniques
 - Promote awareness of physical responses
- f. Personalize recommendations based on student responses
 - Monitor individual patterns
 - Adjust sequencing to individual needs
 - Account for age and skill level differences

For Music Therapists

Clinical Applications:

- g. Select genres based on therapeutic goals
- Stress resilience: Latin patterns
- Sustained attention: Fusion patterns
- Moderate engagement: Jazz/Rock patterns

- h. Monitor physiological responses to guide therapy
- Use wearable devices when appropriate
- Teach clients self-monitoring
- Adjust interventions based on responses

- i. Design progressive programs using genre characteristics
- Start with comfortable genres
- Gradually introduce more demanding patterns
- Sequence for optimal learning and health benefits

Chapter 5: Conclusion

Musical genres create distinct physiological signatures during individual practice. This has important exploratory implications for understanding stress-performance relationships in musicians.

Key Findings

The Latin Music Biphasic Response

The identification of Latin music's biphasic response pattern offers preliminary evidence of a potentially novel pattern. This may contribute to music performance science if validated in larger samples. The pattern suggests that genre-specific practice protocols could optimize both:

- Skill development
- Health outcomes

Stress as a Measurable Variable

This study provides evidence that stress responses during individual instrumental practice are both:

- Measurable: Using objective physiological monitoring
- Meaningful: Related to cardiovascular load across multiple musical styles

Genre-Specific Patterns

Across the four musical styles studied, Stress Index correlated strongly with heart rate, but with notable differences:

Fusion drumming:

- Most consistent and robust stress-heart rate associations
- Strong sustained relationships
- Optimal for skill development

Latin drumming:

- Sharp high-intensity stress peaks
- Linked to maximum heart rate
- Unique biphasic pattern
- Potential for stress resilience training

Jazz and Rock:

- Intermediate patterns
- Strong correlations but less extreme
- Suitable for sustained practice

Implications for Learning

These findings support the concept of adaptive stress as a potential facilitator of learning and brain flexibility (neuroplasticity) in older musicians. The different patterns suggest that:

- Different genres train different capacities
- Strategic sequencing can optimize benefits
- Musical practice can serve multiple health functions

Methodological Contributions

A Novel Approach

The integration of three methodological elements represents an advancement in music practice research:

Wearable physiological monitoring

- Continuous, objective data collection
- Non-invasive measurement
- Real-world practice conditions

Advanced HRV analytics

- Gold-standard analysis software
- Multiple stress indices
- Validated measures

Video synchronization

- Precise temporal matching
- Identification of specific challenging moments
- Context for physiological responses

This combination offers a novel approach for capturing the dynamic interplay of:

- Stress
- Performance demands
- Practice strategies

Value of Single-Case Design

While this single-case design limits generalizability, the results highlight:

- Feasibility: The method works and produces interpretable data
- Potential: Clear applications for larger-scale studies
- Depth: Intensive measurement reveals patterns that might be missed in group studies

Broader Implications

For Music Performance Science

This research demonstrates that musical genres are not physiologically equivalent. This has implications for:

- How we design practice studies
- How we interpret music health research
- How we develop interventions

For Healthy Aging

The findings suggest that older musicians can use musical practice as:

- Cognitive training
- Cardiovascular conditioning
- Stress management
- Integrated health intervention

The genre-specific patterns enable tailored recommendations based on individual needs and goals.

For Understanding Beneficial Stress

The study supports the framework that appropriate stress:

- Facilitates learning
- Promotes brain adaptation
- Enhances memory and attention
- Can be harnessed rather than avoided

Future Directions

Immediate Next Steps

Replication studies with multiple participants

- Establish generalizability
- Identify individual differences
- Validate the Latin biphasic pattern

Mechanistic investigations using brain imaging

- EEG or fNIRS during practice
- Identify neural networks involved
- Link brain activity to physiological responses

Intervention trials testing practice protocols

- Randomized designs
- Multiple outcome measures
- Clinical and non-clinical populations

Long-Term Research Goals

Multimodal Integration:

Future research should combine:

- Physiological monitoring (HRV)
- Brain imaging (EEG, fNIRS)
- Behavioral measures (performance quality)
- Subjective reports (perceived effort, enjoyment)
- Hormonal assays (cortisol, catecholamines)

This multimodal approach would provide a comprehensive understanding of how musical practice affects the whole person.

Real-Time Feedback Systems:

Development of technology that:

- Monitors physiological responses during practice
- Provides real-time feedback to musicians
- Suggests adjustments based on response patterns
- Optimizes practice in real-time

Personalized Practice Optimization:

Moving toward individualized recommendations based on:

- Personal physiological response profiles
- Learning goals
- Health status
- Musical background
- Age and skill level

Concluding Thoughts

This study demonstrates that stress responses during individual instrumental practice are reliably measurable and vary systematically by musical style. The findings support a new perspective: **viewing adaptive stress as a facilitator of learning** rather than solely as a barrier to performance.

For the Mature Musician

Older musicians can use physiological self-monitoring to:

- Balance challenge and recovery
- Optimize skill development
- Maintain cognitive function
- Support cardiovascular health
- Enhance practice effectiveness

For the Field

This research contributes not only to understanding stress in musicianship but also to developing evidence-based strategies for:

- Sustaining health across the lifespan
- Optimizing performance at any age
- Promoting well-being through musical engagement

Final Reflection

Musical practice represents a unique intersection of cognitive challenges, physical activity, emotional engagement, and creative expression. By understanding how different musical genres affect our physiology, we can harness these effects to optimize both learning and health.

The journey from novice to expert musician is long, but with evidence-based practice strategies informed by physiological monitoring, musicians can make this journey more efficient, more enjoyable, and more beneficial to overall health and well-being.

References

Balbag, M.A., Pedersen, N.L. and Gatz, M. (2014) 'Playing a musical instrument as a protective factor against dementia and cognitive impairment: A population-based twin study', 'International Journal of Alzheimer's Disease', 2014, Article ID 836748. doi: 10.1155/2014/836748.

Barbeau, A.K. and Cosette, I. (2019) 'The effects of participating in a community concert band on senior citizens' quality of life, mental and physical health', 'International Journal of Community Music', 12(2), pp. 269–288.

Daykin, N. et al. (2017) 'What works for wellbeing? A systematic review of wellbeing outcomes for music and singing in adults', 'Perspectives in Public Health'. London: SAGE Publications.

Elliot, C.A., Hamlin, M.J. and Lizamore, C.A. (2019) 'Validity and reliability of the Hexoskin wearable biometric vest during maximal aerobic power testing in elite cyclists', 'Journal of Strength and Conditioning Research', 33(5), pp. 1437-1444.

Hebb, D.O. (2002) 'The organization of behavior: A neuropsychological theory'. New York: Psychology Press.

Helton, B.C. (2019) 'The phenomenon of adults relearning instrumental music in an American wind band', 'International Journal of Music Education'. doi: 10.1177/0255761419869050.

Jarczok, M.N. et al. (2019) 'Heart rate variability in the prediction of mortality: A systematic review and meta-analysis of healthy and patient populations', 'Neuroscience & Biobehavioral Reviews', 107, pp. 702-714.

Johansen, G.G. and Nielsen, S.G. (2019) 'The practising workshop – A development project', 'Frontiers in Psychology'. doi: 10.3389/fpsyg.2019.02695.

Lehmann, A.C. (1997) 'The acquisition of expertise in music: Efficiency of deliberate practice as a moderating variable in accounting for sub-expert performance', in 'Perception and Cognition of Music'. Tallahassee, FL: Psychology Press, pp. 161–187.

Magrini, M. (2019) 'The brain: A user's manual'. London: Short Books.

Meichenbaum, D. (2017) 'Stress inoculation training: A preventative and treatment approach', in 'The Evolution of Cognitive Behavior Therapy'. London: Routledge, pp. 117-140.

Murakami, H. et al. (2016) 'Accuracy of wearable devices for estimating total energy expenditure', 'JAMA Internal Medicine', 176(5), pp. 702-703.

Norden, J. (2007) 'Understanding the brain'. Chantilly, VA: The Teaching Company (The Great Courses).

Roman-Caballero, R., Arnedo, M., Triviño, M. and Lupiáñez, J. (2018) 'Musical practice as an enhancer of cognitive function in healthy aging: A systematic review and meta-analysis', 'PLoS ONE', 13(11), e0207957. doi: 10.1371/journal.pone.0207957.

Sapolsky, R.M. (2004) 'Why zebras don't get ulcers: The acclaimed guide to stress, stress-related diseases, and coping'. 3rd edn. New York: Holt Paperbacks.

Sapolsky, R.M., Romero, L.M. and Munck, A.U., 2000. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. *Endocrine reviews*, 21(1), pp.55-89.

Schlaffke, L., Friedrich, S., Tegenthoff, M., Güntürkün, O., Genç, E. and Ocklenburg, S. (2019) 'Boom chack boom—A multimethod investigation of motor inhibition in professional drummers', 'Brain and Behavior', 9(11), e01490. doi: 10.1002/brb2.1490.

Segev, I. (2013) 'Synapses, neurons, and brains' [Online course]. Coursera/Hebrew University of Jerusalem. Available at: <https://www.coursera.org/learn/synapses> (Accessed: 15 January 2025).

Shaffer, F. and Ginsberg, J.P. (2017) 'An overview of heart rate variability metrics and norms', 'Frontiers in Public Health', 5, 258. doi: 10.3389/fpubh.2017.00258.

Tachibana, A., Noah, J.A., Ono, Y., Irie, S., Tatsumoto, M., Taguchi, D., Tokuda, N. and Ueda, S. (2024) 'Rock music improvisation shows increased activity in Broca's area and its right hemisphere homologue related to spontaneous creativity', 'BMC Research Notes', 17(1), 12. doi: 10.1186/s13104-023-06633-w.

Talbot-Honeck, C. and Orlick, T. (1999) 'The essence of excellence: Mental skills of top classical musicians', 'Journal of Excellence', 1, pp. 61–75.

Tarvainen, M.P., Niskanen, J.P., Lipponen, J.A., Ranta-Aho, P.O. and Karjalainen, P.A. 2014. Kubios HRV—heart rate variability analysis software. Computer methods and programs in biomedicine, 113(1), pp.210-220.

Taylor, K. (2019) 'Optimal music performance: Goals in practice'. Doctoral dissertation. London: Royal College of Music.

Tsugawa, S. (2009) 'Senior adult music learning, motivation, and meaning: Construction in two New Horizons ensembles'. Doctoral dissertation. Tempe, AZ: Arizona State University.

Wang, S. (2010) 'The neuroscience of everyday life'. Chantilly, VA: The Teaching Company (The Great Courses).

Wijsman, S. and Ackermann, B.J. (2018) 'Educating Australian musicians: Are we playing it safe?', 'Health Promotion International', 34(4), pp. 853-862. doi: 10.1093/heapro/day030.

Yesil, B. and Ünal, S. (2017) 'An investigation on the effects of music training on attention and working memory in adults', 'Anatolian Journal of Psychiatry', 18(6), pp. 531–535.

About the Author

H.R. Lindquist is an advanced drummer (age 65+) with extensive experience in polyrhythmic coordination and a background in IT data administration and security spanning 15+ years. He received his musical education at the Royal Academy of Music, London, UK. and has an MBA from the Graduate School of Business, University of Cape Town, South Africa.

This research represents a convergence of personal musical practice, scientific inquiry, and commitment to understanding how musical engagement can promote healthy aging.

Data Availability Statement

The datasets generated and analyzed during the current study are available from the corresponding author upon reasonable request. Video recordings of practice sessions contain identifiable information and are not publicly available.

Conflict of Interest Statement

The author declares no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Funding Statement

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. All equipment and materials were personally funded by the author as part of routine musical practice activities.

Acknowledgments

The author gratefully acknowledges:

- Carré Technologies Inc. for developing the Hexoskin biometric monitoring system
- Kubios Oy for developing the HRV Scientific analysis software
- Claude AI for assistance with document formatting and structural organization
- The broader community of musicians and researchers whose work informed this study

Correspondence:

H.R. Lindquist

Email: LindquistResearchProject@

ORCID: 0009-0005-5907-1107

Manuscript Received: [Date]

Revised: [Date]

Accepted: [Date]

Published: 2025

Suggested Citation:

Lindquist, H.R. (2025) 'Neural correlates of motor control and stress response during ambidextrous polyrhythmic drumming: An examination into how different musical genres influence autonomic nervous system responses during individual instrumental practice', ['Journal Name'], [Volume]([Issue]), pp. [Page range]. doi: [To be assigned].

Appendices

Appendix A: Data Quality Metrics

Overall Data Quality Statistics:

- Total practice sessions: 144
- Sessions meeting >90% reliability: 144 (100%)
- Mean data reliability: 94.7%
- Mean beat correction rate: 3.2%

Appendix B: Equipment Specifications

Hexoskin ProShirt:

- Model: Hexoskin Smart Shirt
- Manufacturer: Carré Technologies Inc., Montréal, Canada
- Sampling rate: 256 Hz for ECG
- Data transmission: Bluetooth to smartphone/tablet
- Battery life: 14+ hours continuous monitoring

Kubios HRV Scientific 4.2.0:

- Manufacturer: Kubios Oy, Kuopio, Finland
- Platform: macOS
- Analysis methods: Time-domain, frequency-domain, nonlinear
- Artifact correction: Automatic with manual verification
- Export formats: CSV, Excel, PDF

Appendix C: Practice Session Template

Standard Session Structure:

- Equipment setup (5 minutes)
- Warm-up period (10 minutes) - not analyzed
- Genre practice blocks:
 - Fusion (5-minute intervals)
 - Latin (5-minute intervals)
 - Jazz (15-minute intervals)
 - Rock (15-minute intervals)
- Cool-down (10 minutes) - not analyzed
- Equipment removal and data upload (5 minutes)

Total session duration: Typically 2.5 hours

Appendix D: Statistical Software Details

Microsoft Excel:

- Version: Microsoft 365
- Functions used:
 - CORREL (Pearson correlation)
 - LINEST (regression analysis)
 - AVERAGE, STDEV.S (descriptive statistics)
 - Pivot tables (temporal aggregation)

Appendix E: Video Synchronization Protocol

Technical Setup:

- Camera: Standard HD video camera
- Position: Fixed location capturing full drum kit
- Synchronization method: Time-stamp matching between video and Hexoskin data
- Analysis: Kubios time-varying analysis window aligned with video timeline

Synchronization Accuracy: ± 2 seconds for event identification

End of Document

This manuscript represents original research conducted between January 2023 and June 2025. All intellectual content, data collection, analysis, and interpretation are the sole work of the author.

Throughout the preparation of this work, the author employed Claude AI assistance, limited to document formatting and structural organization for publication purposes. Following the utilization of this tool, the author thoroughly reviewed and edited the content as necessary, assuming full responsibility for the publication's content.